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1 EXECUTIVE SUMMARY 

This deliverable documents the work conducted in Task 2.2 (T2.2) of Work Package 2 (WP2), offering a detailed 

overview of the data collected and the algorithmic processes designed for the creation of the ICT Energy Tools 

and Platform. A key aspect of the development process was the application of a co-creation methodology, which 

ensured that the tools were designed in alignment with the needs of relevant stakeholders, including energy 

community managers, aggregators, and prosumers. 

Additionally, this deliverable outlines the datasets collected and analyzed from participating energy 

communities, integrating historical consumption records, renewable generation profiles, financial data, and 

external sources such as weather and market tariff datasets. 

The Energy Forecasting Tool was developed to predict solar PV generation, enabling both long-term strategic 

planning and short-term operational adjustments. Given the data-driven nature of the tools, significant focus 

was placed on the available datasets collected from Renewable Energy Communities and various external 

sources, ensuring reliable model performance. The Energy Modelling and Scheduling Tool was designed to 

optimize energy consumption, resource allocation, and scheduling by maximizing self-consumption through a 

centralized decision-making entity. Unlike traditional approaches, this tool enables optimal energy management 

at the community level without relying on grid operator incentives. The Cost Benefit Analysis and Decision-

Making Tool supports energy community leaders, aggregators, and stakeholders in evaluating the financial 

viability of renewable energy investments by assessing costs, return on investment, and long-term sustainability 

while also incorporating sensitivity analysis to economic variables. 

This deliverable also provides details on the technology stack used, including Python-based data processing, 

optimization, and financial modeling libraries, as well as the React-based user interface for visualization and 

interaction.  

Finally, this document concludes with insights into the next steps, particularly focusing on the validation of the 
tools in Task 2.3.  
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2 Introduction 

2.1 Scope of the deliverable 

The aim of WP2 is to provide a user-friendly platform for energy communities (ECs) supporting them in the 

coordination of their energy resources and future activities planning. To achieve this, WP2 adopts a three-step 

approach, comprising (i) defining the platform requirements and identifying ECs' Use Cases (UCs) (T2.1), (ii) 

developing the platform to meet the needs of ECs (T2.2), and (iii) validating the platform and energy analyses for 

the ECOEMPOWER ECs (T2.3).  

This deliverable results from the work carried out in T2.2 – Platform development for system planning and 

decision making. Its scope contains a detailed description of the co-creation methodology we have followed for 

the development of the ICT Platform and the three distinct energy tools; the Energy Forecasting Tool, the Energy 

Modelling & Scheduling Tool and the Cost-Benefit Analysis (CBA) Tool. Additionally, we also describe the relevant 

data we have received from the 5 Regional Ecosystems (REs) as well as details regarding the algorithmic 

methodologies and technical implementation of the different UCs described in D2.1. 

The aim of the document is also meant to pave the way for the future deliverables of this WP, that will in turn 

validate, refine and finalize the ICT Platform and its services by the end of the project. Overall, D2.2 aims to 

provide a first look of the progress of the technical implementation of the Energy Tools and give a more concrete 

look of the value for each RE. 

 

2.2 Deliverable Structure 

 

D.2.2 is structured in seven sections as follows: 

• Section 1: Executive summary – This section provides a concise overview of the document's contents. 

• Section 2: Introduction – This section provides an overview of this document including the description 

of its purpose, structure, and its interdependencies to the other ECOEMPOWER tasks and deliverables. 

• Section 3: ICT Tool Development Methodologies – This Section provides an overview of the 

methodology followed to co-create the tools and collect data. 

• Section 4: Data Collection and Analysis – This section presents the overview of the data collected by 

the 5 Regional Ecosystems, along with the external data that were utilized for the development process. 

• Section 5: Energy Tools Overview – This section of the document outlines the three Energy Tools by 

covering their methodologies, algorithmic processes and evaluation metrics. 

• Section 6: Technology Stack – This section provides basic information regarding the technology stacks 

used for the development of the Platform. 

• Section 7: Conclusions and Next Steps – In this Section, key deliverable outcomes are summarized and 

the subsequent steps or actions to be taken within the project are outlined. 

 

The document concludes with the Reference section and the lists of figures and tables. 
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2.3 Interdependencies with other Tasks and Deliverables 

 

The interdependencies between T2.1, T2.2, T2.3, and T6.2 are fundamental to ensuring the seamless 

development and implementation of the ECOEMPOWER project. T2.1 lays the groundwork by identifying and 

characterizing the requirements of ECs, providing crucial input for the development of the software platform in 

T2.2. The platform developed in T 2.2, tailored to meet the requirements presented in Task 2.1, will then be 

utilized in T2.3 for platform validation and conducting energy studies in collaboration with the ECOEMPOWER 

pilot sites. Meanwhile, the data acquired during the initial phase of the project for T2.1, including assessments 

performed in collaboration with T6.2, will serve as a baseline for benchmarking purposes, providing essential 

insights into the existing infrastructure and planned initiatives within the targeted regions. The data collection 

continued in T2.2 as well, where more specialized data from the individual pilot sites were gathered and analyzed 

as part of the co-creation methodology. Also, a synergy has been identified with T4.4 and the ECOEMPOWER 

Community Platform as it could potentially be used to host the various Energy Tools presented in this deliverable.  
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3 ICT Tool Development Methodologies 

This chapter outlines the methodologies that support the development of energy tools designed for energy 

communities. The first subchapter focuses on the broad data-driven decision-making process, emphasizing the 

framework of co-creation with Pilot Sites and stakeholder collaboration. This ensures that tools are tailored to 

real-world needs and offer practical value. The second subchapter identifies the primary stakeholders, outlining 

their roles and how the tools address their unique requirements. Finally, the data collection methodologies are 

detailed, covering the timeline, sources, and methods used to gather and process energy consumption, 

generation, and tariff data. Together, these elements form the methodological backbone of the project. 

3.1 Data Driven Decision Making Process 

The development of the energy tools followed a structured, data-driven decision-making framework centered 

on collaboration and co-creation with Pilot Sites. This process ensured that the tools address the specific 

challenges and requirements of the energy communities involved in the project. By engaging community 

managers, aggregators, and other stakeholders early in the process, the tools were designed to align with the 

real-world conditions, priorities, and regulatory frameworks specific to each region. Regular workshops, 

interviews, and feedback loops were conducted to refine the tools based on stakeholder input, fostering a 

participatory and iterative development approach. 

The co-creation process leveraged real historical data, such as energy consumption patterns, generation profiles, 

and financial data, to create tailored use cases. These use cases, such as energy profile generation, community 

energy flow modelling, and cost-benefit analysis, served as the foundation for tool design. A modular approach 

was adopted to ensure scalability and adaptability across diverse energy community contexts. This methodology 

allowed the decision-making framework to remain flexible, enabling the addition of new data inputs or 

functionalities as the tools evolve and the needs of the Pilot Sites grow. 

By anchoring decision-making in robust data analysis and collaboration, the tools not only provide actionable 

insights but also empower stakeholders to make informed decisions. The framework emphasizes transparency 

and inclusivity, ensuring that all stakeholders—from community managers to end-users—can understand and 

trust the recommendations provided by the tools. This approach builds confidence in the outputs, fosters 

stakeholder engagement, and ultimately enhances the adoption and success of the energy management 

solutions developed in the project. 

3.2 Target Stakeholders  

The energy tools developed as part of the project are designed to serve a wide range of stakeholders, reflecting 

the diversity of roles and interests within energy communities. These stakeholders include energy community 

managers, aggregators, policymakers, prosumers, and other relevant actors who play a role in the planning, 

operation, and optimization of energy systems. This section addresses the key stakeholders involved in the 

energy tools' development and deployment, emphasizing how their unique needs and challenges are addressed 

through the methodological framework. A significant element of the methodology is ensuring that the tools are 

designed to bridge existing gaps in energy management and decision-making processes, making them practical 

and impactful for diverse users. 
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By merging fragmented data into actionable insights, the tools directly address challenges in understanding 

energy consumption patterns at both individual and community levels. They also provide much-needed 

optimization capabilities for energy communities and managers who may lack the resources for advanced 

modeling or simulation. Early-stage energy communities, often limited by expertise or infrastructure, benefit 

from user-friendly tools that guide investment planning and energy flow optimization. Finally, by offering 

scenario-based analytics, the tools align with policymakers' needs for data-driven insights to craft more effective 

policies. 

This stakeholder-driven approach ensures that the tools are developed not only to address pain points but also 

to empower users with the knowledge and strategies necessary to enhance energy efficiency, optimize 

resources, and support long-term sustainability. 

Stakeholder Pain Points  Benefits Provided by Tools 

Energy Community Managers and 

Aggregators 

Lack of tools to optimize intra-

community energy flows and self-

consumption.  

Limited insights for day-ahead 

planning and load balancing. 

Detailed energy profiles and 

community-level simulations.  

Enhanced self-consumption 

optimization.  

Data-driven day-ahead scheduling 

and load management. 

Prosumers and End-Users Limited understanding of personal 

energy usage patterns.  

Missed opportunities for reducing 

energy costs through better self-

consumption. 

Personalized recommendations 

for energy efficiency and load-

shifting.  

Insights into usage patterns to 

optimize energy behavior. 

Policymakers and Regulators Lack of data-driven insights for 

shaping effective policies.  

Difficulty in evaluating 

community-wide energy 

investment impacts. 

Scenario-based insights on 

economic and social benefits of 

energy policies.  

Support for designing policies that 

promote sustainable energy 

practices. 

Technology Developers and 

Researchers 

Difficulty in testing and validating 

new energy solutions in realistic 

settings.  

Lack of datasets to explore 

community-level optimization. 

Access to data-driven energy 

profiles, simulated energy flows, 

and scenario-based tools for 

validation and experimentation. 

Energy Communities at Early 

Stages 

Lack of guidance for investment 

planning and resource allocation.  

Difficulty in evaluating long-term 

benefits of community 

participation. 

Investment planning scenarios 

tailored to energy communities.  

Tools to model operational plans 

without complex real-time data 

requirements. 
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Utility Companies Difficulty in understanding 

distributed energy resources 

within communities.  

Lack of tools to manage peak loads 

or grid imbalances. 

Support for better demand-side 

management at the community 

level.  

Insights into peak load trends and 

opportunities for redistribution. 

 

3.3 Data Collection Methods 

The data collection process followed a structured approach designed to gather the necessary inputs for the 

development and implementation of the energy tools outlined in this study. This process was guided by the co-

creation framework and iterative discussions with key stakeholders, ensuring that the data collected was both 

relevant and aligned with the objectives of the use cases. The collection period spanned from M7 to M15 and 

was carried out as part of the activities within T2.2. 

Data from pilot sites formed the backbone of this effort, and at this stage of the project, they could only be 

provided in the form of static datasets provided in Excel format. These datasets included critical information on 

energy consumption, generation patterns, and key characteristics of the buildings and assets within the energy 

communities. The pilot sites shared their data through bilateral discussions, during which specific requirements 

for the tools were outlined, and gaps were identified and addressed collaboratively. Additionally, workshops 

were organized with community managers and other stakeholders to refine the scope and applicability of the 

data. 

To complement the static data, open-source datasets were retrieved via Application Programming Interfaces 

(APIs) from external sources, ensuring the inclusion of market tariffs, weather conditions, and other contextual 

factors critical for modeling and analysis. These external data sources were selected based on their reliability, 

relevance, and ability to integrate seamlessly with the tools under development. 

The collected data served two primary purposes. First, it was utilized to train the algorithms underlying the 

energy tools, ensuring that their outputs accurately reflect the patterns and variability present within the real-

world energy systems of the pilot sites. Second, the datasets provided crucial insights into the types of inputs 

that can be reasonably expected from the REs, which informed the design and functionality of the tools. 

Understanding these input characteristics was essential for aligning the tools’ capabilities with the operational 

context and limitations of the energy communities. 

The methodology adopted for data collection mainly prioritized flexibility, and practical applicability. While the 

process is not exhaustive or entirely automated, as we had originally envisioned in D2.1, this approach ensured 

that the collected data adequately represented the operational context of the energy communities, and thus 

kickstarting the development of the Energy Tools. 
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4 Data Collection and Analysis 

This chapter provides an overview of the data gathered to support the development and implementation of the 

energy tools designed for the project. It details the types and characteristics of data collected from the five REs, 

encompassing both static and dynamic datasets provided by the pilot sites. These datasets include key 

information on energy consumption, generation, and asset characteristics, which form the foundation for 

creating energy profiles and models. 

In addition to the pilot-specific data, the chapter also highlights the external datasets sourced from open APIs 

and publicly available resources. These external data types include market energy tariffs, weather information, 

and other contextual variables that are essential for enhancing the modeling and analysis capabilities of the tools. 

Together, these datasets enable the comprehensive analysis of energy behaviors within the pilot communities, 

providing the insights necessary to achieve the project's objectives. 

4.1 Data Collected and Analyzed from the REs 

4.1.1 RE1: Autonomous Province of Trento (Italy) 

In this section we will describe the basic characteristics of the data provided by PAT, representing the three 

Energy Communities (Val di Fassa, Levico Terme, Valle dei Laghi) of the RE of Province of Trento. 

The datasets received are focused on Pilot Site Levico Terme as it is the one that has the highest technical 

maturity of the three. They contain detailed records of energy consumption and financial data for the energy 

community of Levico Terme. They cover energy use for public infrastructure, residential buildings, and general 

community facilities. These datasets serve as a foundation for energy management, scheduling, and optimization 

efforts and will be used as the basis for developing the applicable UCs created in D2.1 into the ICT Tools, more 

specifically the Energy Modelling and Scheduling Tool. The two tables below provide the basic characteristics of 

the two datasets provided by PAT. 

Table 1 RE1 Dataset A (Consumi 23 24) 

Characteristic Details 

Location Levico Terme, Trento, Italy 

Date Range  January 2023 - March 2024 

Number of Records 2073 

Number of Variables 101 

Type of Use Public Lighting, Other Uses, Domestic Tariffs 

Energy Data Detailed energy consumption in time bands (F0-F3). 

Financial Data Extensive data on tariffs, taxes, and billed amounts. 
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Table 2 RE1 Dataset B (Consumi ante 2023) 

Characteristic Details 

Location Levico Terme, Trento, Italy 

Date Range  Before January 2023 

Number of Records 6885 

Number of Variables 103 

Type of Use Public Lighting, Other Uses, Domestic Tariffs 

Energy Data Less detailed energy data; segmented time bands. 

Financial Data Basic data on tariffs and billed amounts. 

The datasets provide extensive information on energy usage and financial metrics for the municipality of Levico 

Terme, Italy. The first dataset contains records spanning from January 2023 to March 2024, offering granular 

data for recent energy consumption and billing cycles. The second dataset has records, focusing on historical 

energy and financial data before 2023, making it valuable for long-term trend analysis. 

Both datasets feature over 100 variables, including identifiers for network operators, business partners, and 

billing accounts. The datasets capture multiple facets of energy operations, including: 

• Consumption data categorized by time bands. 

• Financial details such as tariffs, taxes, and billing breakdowns. 

Both datasets include energy consumption segmented by time bands (F0: total, F1: peak, F2: intermediate, F3: 

off-peak). Data includes total energy consumed (in kWh) as well as hourly or daily breakdowns for specific 

periods. Additional metrics such as total energy sold and specialized categories (e.g., PUN hourly and green 

energy) are recorded. Dataset A provides more recent and complete details, while Dataset B offers historical 

trends. 

The financial data in both datasets is extensive, covering components such as: 

• Energy tariffs (fixed and variable). 

• Taxes, including VAT and excise duties. 

• Adjustments for renewable energy, system charges, and other billing elements. 

Notably, Dataset A has better granularity for recent billing trends, while Dataset B captures broader historical 

aggregates. 

Both datasets classify energy consumption into standardized time bands: 

• F0 (Total): Represents the aggregate energy consumption for all periods. 

• F1 (Peak): Captures usage during high-demand periods, typically reflecting the highest tariffs. 
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• F2 (Intermediate): Covers mid-level demand periods with moderate tariffs. 

• F3 (Off-Peak): Reflects low-demand periods, often with the lowest tariffs. 

This segmentation allows for detailed profiling of energy consumption patterns. For example, a high proportion 

of consumption in F3 suggests cost-saving opportunities, while increased F1 usage highlights areas for 

optimization through load shifting. Additional metrics such as "Off Peak" and "PUN hourly" (Italian energy market 

hourly price) in both datasets provide further granularity. These enable more sophisticated analyses, such as 

identifying opportunities for integrating renewable energy during low-cost periods or understanding the impacts 

of dynamic tariffs. 

The financial data in both datasets is extensive and structured, providing valuable insights into the economic 

aspects of energy use. Shared metrics include fixed and variable tariffs, taxes (e.g., VAT and excise duties), and 

adjustments for renewable energy and system charges. These financial details offer a comprehensive view of 

billing dynamics. 

Dataset A stands out for its inclusion of recent adjustments and charges, such as: 

• Green Energy Fees: Reflecting community investments in renewable energy. 

• New Billing Adjustments: Likely due to regulatory or market changes in recent years. 

These recent additions suggest a growing emphasis on sustainability and the incorporation of renewable energy 

initiatives. On the other hand, Dataset B provides a historical perspective, highlighting simpler or more traditional 

billing structures used in earlier years. The combination of these datasets enables a comparative analysis of how 

energy pricing and policy have evolved over time, which is essential for understanding long-term trends and 

planning future strategies. 

4.1.2 RE2: Auvergne-Rhône-Alpes and Grand Est (France)  

In this section, we describe the basic characteristics of the data provided for the French pilot sites, representing 

the three Energy Communities: Centrales Villageoises Vercorsoleil, Centrales Villageoises Vézouze-en-Piémont, 

and Centrales Villageoises Eau et Soleil du Lac, as have been provided by ACV. 

These datasets are focused on energy production metrics and are crucial for developing advanced energy 

forecasting models as part of the implementation of UC1 through the Energy Forecasting Tool. The datasets 

include detailed monthly records of solar energy production, segmented by individual installations and their 

corresponding characteristics (e.g. capacity, building type, orientation etc). This provides a foundation for 

predicting future energy production, assessing seasonal trends, and optimizing renewable energy utilization 

across communities. Below, we summarize the datasets for each pilot site and their relevance to energy 

forecasting. 

Table 3 RE2 Centrales Villageoises Vercorsoleil Dataset 

Characteristic Details 

Location Vercors region, France (multiple villages including La 

Chapelle, Saint Agnan, Saint Julien) 

Date Range  January 2017 – April 2024 



Deliverable D2.2 

ECOEMPOWER – GA No 101120775 Page 17 (56) 

Number of Installations 29 

Building Types Public buildings (schools, village halls, churches, 

presbyteries) 

Energy Metrics Monthly energy production (kWh), cumulative 

production (kWh), and efficiency (kWh/kWc) 

 

Table 4 RE2 Centrales Villageoises Vézouze-en-Piémont Dataset 

Characteristic Details 

Location Vézouze-en-Piémont region, France (villages include 

Domjevin, Amenoncourt, Repaix) 

Date Range  January 2021 – April 2024 

Number of Installations 10 

Building Types Public facilities (schools, gyms, town halls, village 

halls) 

Energy Metrics Monthly energy production (kWh), cumulative 

production (kWh), and efficiency (kWh/kWc) 

 

Table 5 RE2 Centrales Villageoises Eau et Soleil du Lac Dataset 

Characteristic Details 

Location Aix-les-Bains region, France 

Date Range  March 2023 – April 2024 

Number of Installations 1 

Building Types School facilities 

Energy Metrics Monthly energy production (kWh), cumulative 

production (kWh), and efficiency (kWh/kWc) 

Each dataset captures key attributes relevant to energy production operations, including: 

• Monthly energy production (kWh): Total energy generated for each installation. 

• Cumulative energy production (kWh): Long-term tracking of production output at the community level. 
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• Efficiency metrics (kWh/kWc): A standardized measure of the energy output generated by a solar 

installation relative to its installed capacity (in kilowatts-peak, kWc). It quantifies how effectively a solar 

system converts sunlight into electricity, expressed as the number of kilowatt-hours (kWh) produced 

per kilowatt-peak (kWc) of installed capacity over a specific period (e.g., monthly or annually). This 

metric allows for performance comparisons across systems of different sizes and configurations. 

The datasets highlight key differences in production patterns and efficiencies across the three energy 

communities. Vercorsoleil provides the most extensive dataset, covering multiple installations over a long 

timeframe, making it well-suited for broad trend analysis. In contrast, Eau et Soleil du Lac focuses on a single, 

high-efficiency installation, offering a more concentrated but detailed view of performance. While the datasets 

include monthly records, they lack finer granularity, such as daily or hourly readings, limiting their usefulness for 

short-term analyses or peak demand assessments. Additionally, occasional gaps appear in certain months for 

specific installations, requiring careful handling to avoid distortions in long-term forecasting. Though these gaps 

are not widespread, they emphasize the need for interpolation or assumptions to maintain analytical 

consistency. 

The datasets provide valuable insights into seasonal variations in energy production, allowing for a better 

understanding of fluctuations in output across different times of the year. By analyzing data over multiple 

months: 

• Peak generation periods can be identified in summer, with reduced production observed in winter. 

• These seasonal insights support planning for energy storage and supplementary generation during low-

production months. 

• Understanding production cycles helps optimize resource allocation and ensure energy availability 

throughout the year. 

Beyond energy production, the datasets include critical installation attributes that influence efficiency. Each 

record captures: 

• Building orientation and tilt: Affects exposure to sunlight. 

• System size (kWc capacity): Allows for comparisons across installations. 

• Performance trends: Helps to identify best practices and areas for improvement. 

To ensure comparability across installations and communities, the datasets use standardized energy production 

metrics, such as: 

• Total output (kWh): Insights into absolute production levels. 

• Efficiency ratios (kWh/kWc): Performance benchmarking. 

These standardized measures facilitate integration into larger analytical models, supporting energy planning at 

both local and regional levels. Another key strength of the datasets is their chronological structure, which allows 

for time-series analysis of long-term production trends. This format supports: 

• Evaluation of intervention impacts: Tracking improvements over time. 

• Forecasting of future energy output: Aiding in strategic planning. 

• Identification of performance anomalies: Though short-term fluctuations may be harder to detect due 
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to the monthly data resolution. 

While the datasets provide a solid foundation for macro-level energy forecasting, their limitations—such as 

occasional data gaps and a lack of high-frequency readings—underscore the need for robust monitoring systems. 

Enhancing data granularity and ensuring continuous reporting would further improve their value for both 

operational and strategic energy assessments. 

4.1.3 RE3: Allgäu (Germany) 

In this section we will describe the basic characteristics of the data provided by eza! and BAUM, representing the 

three Energy Communities (Elektrizitätswerke Hindelang, Dorfenergie Eppishausen, Elektrizitätswerke Reutte) of 

the RE of Allgäu. 

The datasets received are focused on Pilot Site Elektrizitätswerke Hindelang and contain a detailed report of 

timestamped generation and consumption energy data from various locations in the community. These datasets 

serve as the foundation for developing an Energy Modelling and Scheduling Tool, which will enable energy 

management, scheduling, and optimization. 

The datasets cover detailed energy consumption across different sectors, including households, commercial 

businesses, agricultural enterprises, and specialized operations, recorded at 15-minute intervals. Additionally, a 

separate dataset contains generation data from multiple locations. 

The datasets are categorized into energy consumption and generation datasets, enabling a comprehensive 

analysis of energy demand and supply. The table below contains the basic characteristics of the consumption 

datasets: 

Table 6 Energy Consumption Datasets for RE3 

Category Description 

Households Energy consumption for residential buildings 

Commercial Businesses (Type 1) General commercial energy consumption 

Commercial Businesses (Type 2) Businesses operating between 8 AM - 6 PM 

Commercial Businesses (Type 3) Businesses with peak energy consumption in the 

evening hours 

Shops & Hair Salons Businesses with continuous energy consumption 

throughout the day 

Bakeries Energy consumption for stores and salons 

Weekend Businesses  Energy consumption for bakeries with in-house 

baking facilities 

Agricultural Enterprises  General agricultural energy consumption 
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Dairy Farming Energy consumption for farms with dairy operations 

Other Agricultural Enterprises Energy use for miscellaneous agricultural businesses 

 

The basic characteristics of the set are the following: 

• Time of energy consumption record (15-minute intervals) 

• Energy consumption for Winter on Saturdays, Sundays, and weekdays 

• Energy consumption for Summer on Saturdays, Sundays, and weekdays 

• Energy consumption for transitional seasons on Saturdays, Sundays, and weekdays 

• Aggregated energy consumption for a given category (e.g., per 1000 households) 

The generation dataset contains measured energy production from various renewable energy installations, 

recorded at 15-minute intervals. The dataset provides data from multiple locations, including: 

 

Table 7 Generation Dataset Overview 

Location Generation Type 

LandWirt + Hotel Eggensberger PV system 

Hotel Eggensberger  

 

Combined Heat & Power system (CHP) 

Hoteldorf Hartung  CHP and PV system 

Hotel Hirsch  CHP and PV system 

Klinik Enzensberg  CHP and PV system 

Some initial patterns that can be detected from the generation datasets include: 

• Early Morning (00:00 - 07:00): No solar PV generation; BHKW (CHP) systems provide steady output. 

• Morning to Midday (07:00 - 12:00): Gradual increase in PV generation, reaching a peak around midday. 

• Afternoon to Evening (12:00 - 18:00): Peak PV generation occurs in this timeframe. 

• Nighttime (18:00 - 00:00): PV generation ceases, leaving BHKW systems as the primary source of 

generation. 

4.1.4 RE4: Zlín Region (Czech Republic) 

The following section outlines the fundamental characteristics of the datasets provided by EAZK for the Zlín 

Region RE. These datasets contain detailed energy consumption data, tariff structures, and operational 
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characteristics related to the municipality’s energy infrastructure. They cover public and municipal buildings, 

energy consumption patterns, distribution tariffs, and self-consumption aspects. These datasets form the 

foundation for the development of the Energy System Modelling and Scheduling Tool, which will support energy 

optimization and planning for energy communities. 

The datasets focus on the Pilot Site of Vlčnov, which is the one with the highest technical maturity in terms of 

monitoring infrastructure. They cover different aspects of the energy system like: 

• Electricity infrastructure and tariffs for municipal buildings. 

• High-frequency energy consumption data at 15-minute intervals for multiple buildings. 

• Renewable energy generation and self-consumption, particularly photovoltaic (PV) integration for 

municipal operations. 

A summary of the three can be found in the tables below: 

Table 8 Municipality Vlčnov - Electricity Dataset 

Characteristic Details 

Location Vlčnov, Zlín Region, Czech Republic 

Date Range  February 2024 – September 2024 

Number of Records 33 

Number of Variables 17 

Type of Use Infrastructure & Energy Tariffs; Public buildings and 

municipal energy infrastructure 

Energy Data Tariff structures, high and low tariff energy 

consumption (kWh), reserved power 

Operational Data Electricity supplier, voltage levels, fuse/circuit 

breaker capacities, type of metering 

Financial Data Distribution tariffs, billing periods, invoicing details 

 

Table 9 Vlčnov Consumption Data from 3 buildings 

Characteristic Details 

Location Vlčnov, Zlín Region, Czech Republic 

Date Range  February 2023 – December 2023 
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Number of Records 35,043 per building (3 buildings/meters) 

Number of Variables 7 

Type of Use Time-series energy consumption data; Municipal 

buildings, public facilities 

Energy Data Active power consumption (kW), reactive power 

(kVAr), power metering at 15-minute intervals 

 

Table 10 Municipal House Vlčnov Dataset 

Characteristic Details 

Location Vlčnov, Zlín Region, Czech Republic 

Date Range  February 2024 – August 2024 

Number of Records 20,349 

Number of Variables 6 

Type of Use Municipal House energy use and self-consumption 

Energy Data Active consumption (kW), photovoltaic (PV) energy 

supply (kW) 

Operational Data Metering Status 

Together, these datasets provide a comprehensive view of the energy landscape in Vlčnov, offering insights into 

consumption trends, tariff structures, and renewable energy integration. 

The Municipality Vlčnov - Electricity dataset provides high-level information about the electricity infrastructure, 

metering points, supplier details, tariff structures, and network limitations. This dataset is essential for 

understanding the billing framework and operational constraints that affect municipal energy management. 

The Vlčnov Consumption Data dataset includes detailed time-series energy consumption records for multiple 

municipal buildings, captured every 15 minutes. These granular readings allow for profiling energy demand, 

identifying peak consumption patterns, and optimizing scheduling. The dataset also includes reactive power 

measurements, which are crucial for assessing power quality and network efficiency. 

The Municipal House Vlčnov dataset focuses on energy self-consumption and renewable energy generation, 

specifically photovoltaic (PV) energy production and its impact on energy demand. This dataset allows for 

evaluating the self-sufficiency potential of municipal buildings and provides insights into the efficiency of 

renewable integration. 
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As a holistic overview of the Czech Data, some key insights can be extracted. A key aspect of the data is the 

energy consumption trends in relation to tariff structures. Consumption is measured at high and low tariff 

periods, which allows for cost analysis and energy savings through strategic load shifting. Understanding the 

billing structure and tariff categories enables the municipality to optimize operational costs and select cost-

efficient energy agreements. 

The time-series datasets offer 15-minute interval recordings of energy usage, making it possible to identify 

anomalies, inefficiencies, and peak demand periods. This level of granularity supports the development of 

demand-side energy management strategies that can reduce unnecessary load surges and improve energy 

efficiency. 

In addition to consumption data, the datasets include renewable energy and self-consumption metrics, with a 

particular focus on photovoltaic (PV) generation at the Municipal House. These records provide insights into the 

extent to which solar energy contributes to the municipality’s energy needs, as well as opportunities for 

optimizing surplus PV energy distribution and exploring energy storage solutions. 

From a broader community perspective, these datasets support energy balancing and resource optimization 

across multiple municipal buildings. By analyzing these datasets collectively, it is possible to model and simulate 

various energy flow scenarios, helping to reduce grid dependence and enhance self-sufficiency. More specifically, 

the datasets enable the following key analyses: 

• Energy profiling and demand analysis: Identifying usage patterns and forecasting energy needs. 

• Cost and tariff optimization: Aligning consumption with off-peak tariff periods to minimize expenses. 

• Renewable energy integration: Assessing the impact of PV generation on municipal energy self-

sufficiency. 

• Community-wide energy flow simulations: Exploring how energy can be shared between buildings to 

enhance efficiency. 

• Investment planning for energy storage and grid upgrades: Providing data-driven insights into future 

infrastructure improvements. 

4.1.5 RE5: Region of Central Greece (Greece) 

In this section we will describe the basic characteristics of the data provided by ROCG, representing the three 

Energy Communities (Domokos, Amfikleia, Kamena Vourla) of the RE of the Region of Central Greece. 

The datasets received are focused on Pilot Site Domokos as it is the one that has the highest technical maturity 

of the three. They contain detailed records of energy consumption and financial data for different residential, 

commercial and municipal buildings. The data covers different levels of granularity, offering a comprehensive 

view of energy usage patterns, cost structures, and potential areas for optimization. Each dataset supports 

financial and operational decision-making by enabling stakeholders to analyze consumption trends, cost 

fluctuations, and potential areas for efficiency improvements. Below is a structured breakdown of each dataset, 

highlighting its key features and relevance.  

Table 11 Domokos Dataset A - Residential Consumption Data 

Characteristic Details 
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Location Domokos, Greece 

Date Range  January 2024 – Dec 2024 

Number of Records 160 

Number of Variables 6 

Type of Use Household/residential electricity consumption 

Financial Metrics Billed energy costs per kWh, final amounts, and billing 

type 

Energy Metrics Energy consumption per household across multiple 

billing periods 

 

Table 12 Domokos Dataset B - Commercial Consumption Data 

Characteristic Details 

Location Domokos, Greece 

Date Range  January 2024 – Dec 2024 

Number of Records 36 

Number of Variables 6 

Type of Use Commercial sector energy consumption 

Financial Metrics Detailed billing data including per kWh cost, final 

billed amounts, and type of billing 

Energy Metrics Aggregated energy consumption per billing period 

 

Table 13 Domokos Dataset C- Municipal Consumption Data 

Characteristic Details 

Location Domokos, Greece 

Date Range  November 2024 

Number of Records 2880 
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Number of Variables 3 

Type of Use Public buildings' electricity consumption 

Energy Metrics High-frequency time-series energy consumption in 

kWh, recorded at 15-min granularity 

The three datasets together form a comprehensive picture of energy usage within the Domokos Energy 

Community, covering municipal, commercial, and residential sectors. While Dataset C (Municipal) offers a 

detailed time-series analysis of energy consumption, Dataset B (Commercial) and Dataset A (Residential) 

provide structured billing period data with financial insights. 

The key differentiators among the datasets include: 

• Granularity: Municipal dataset provides high-frequency readings, whereas commercial and residential 

datasets aggregate data at billing periods. 

• Financial Coverage: Commercial and residential datasets contain detailed cost structures, while 

municipal data focuses solely on energy usage. 

• Sector Focus: Municipal dataset helps optimize public infrastructure energy use, commercial dataset 

aids businesses in cost control, and residential dataset offers insights into household consumption 

trends. 

• Tariff Diversity: The commercial and residential datasets include distinct tariff structures, affecting 

energy pricing and final billed amounts. 

The first dataset represents residential electricity consumption patterns, structured similarly to the commercial 

dataset but focusing on individual households. It provides energy usage statistics alongside financial metrics such 

as unit costs and total billed amounts. The dataset covers 15 different residential consumers, representing 

various energy consumption patterns. Additionally it includes two distinct billing formats: 

• Green (Special) Tariff: Linked to subsidized pricing models. Default for customers who don’t choose a 

plan. Price is announced monthly by each supplier. 

• Yellow (Variable) Tariff: A pricing model with fluctuating rates, based on wholesale market prices and 

their fluctuations. 

The second dataset captures commercial energy consumption and associated financial costs, segmented by 

business entities. It includes both energy consumption data (in kWh) and financial breakdowns such as cost per 

kWh and total billing amounts. The data is aggregated at a broader level on a monthly basis, covering three 

different small-medium sized businesses. Similarly to the first dataset, it also includes two distinct tariff 

categories: 

• Green (Special) Tariff: Linked to subsidized pricing models. Default for customers who don’t choose a 

plan. Price is announced monthly by each supplier. 

• Blue (Fixed) Tariff: A standard fixed-rate pricing model. 

This dataset is particularly useful for tracking business-sector energy costs, assessing tariff impacts, and 

optimizing electricity expenses for commercial operations. 
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The third dataset provides detailed municipal energy consumption records, structured with timestamps at the 

date and time level. The granularity allows for an in-depth analysis of electricity demand patterns, peak usage 

hours, and overall energy efficiency within municipal or public sector buildings in Domokos. The dataset is 

valuable for tracking energy demand fluctuations, optimizing operational energy efficiency, and supporting 

energy-saving initiatives. 

4.2 Data from External Sources 

In our exploration of available datasets to inform the development of our energy management tools, we have 

identified several external sources that offer valuable data across various domains. While not all have been 

directly utilized, each provides insights pertinent to energy forecasting, modeling, and financial analysis. Below 

is a categorized overview of these datasets: 

Table 14 Collection of external datasets explored in the development of the ICT Tools 

Dataset Name Data Features Description 

OpenWeatherMap Weather Data including 

Temperature, Solar Irradiance and 

more 

Provides comprehensive weather 

data, including current conditions, 

forecasts, and historical data. This 

information is crucial for 

predicting energy demand and 

renewable energy generation. 

Utilized for integrating weather 

data into energy models. 

Copernicus Atmosphere 

Monitoring Service (CAMS) Solar 

Radiation Time-Series  

Solar Radiation Parameters (GHI, 

DNI) 

Offers historical data on solar 

radiation, essential for modeling 

solar energy generation and 

aligning consumption with 

generation. 

European Climate Assessment & 

Dataset (ECA&D)  

Temperature, Precipitation, Cloud 

Cover 

Provides daily weather 

observations from across Europe. 

Valuable for capturing seasonal 

and historical trends, aiding in 

long-term photovoltaic (PV) 

production forecasts and 

validating forecasting models. 

ERA5 Reanalysis Data  Temperature, Solar Irradiance, 

Wind Speed, Cloud Cover  

Offers hourly estimates of 

atmospheric parameters, 

supporting short-term PV 

production forecasting and 

detailed energy scheduling. 
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ENTSO-E Transparency Platform Electricity Generation, 

Transmission, Consumption, Day-

Ahead Prices  

Provides comprehensive data on 

electricity generation, 

transmission, and market prices 

across Europe. Instrumental for 

energy consumption modeling and 

market analysis. 

RAAEY - European Day-Ahead 

Electricity Prices Map  

Day-Ahead Electricity Prices Offers insights into electricity 

prices across European markets. 

Vital for financial modeling and 

cost-benefit analyses of energy 

projects. 

PRIMES Model  Energy Consumption, Supply, EU 

Carbon Price Trajectories  

Simulates EU energy systems, 

providing projections on market 

dynamics and aiding in economic 

analyses related to energy policies. 

Enerdata Energy Efficiency, CO2 Emissions, 

Energy Trends  

Supports financial analysis by 

providing insights into energy 

efficiency, carbon emissions, and 

consumption trends, aiding in 

evaluating the cost-effectiveness 

of energy projects. 

The datasets outlined above represent a diverse range of data sources that support the foundational 

methodologies behind our energy management tools. By leveraging these datasets, we ensure that our tools are 

informed by robust and reliable data, covering key areas such as weather patterns, energy generation and 

consumption, and market trends. While not every dataset has been directly integrated into the tools, they 

collectively provide a valuable repository for future enhancements and refinements, enabling continuous 

improvement in energy forecasting, modeling, and financial decision-making processes. 
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5 Energy Tools Overview 

5.1 Forecasting Tool 

The Energy Forecasting Tool is designed to provide accurate predictions for solar photovoltaic (PV) energy 

generation across multiple energy communities in the EU. The tool supports both long-term (monthly) 

forecasting (UC1.a) for strategic planning and short-term (hourly/daily) forecasting (UC1.b) for real-time 

operational adjustments. 

The forecasting framework integrates historical solar energy production data, weather datasets, and machine 

learning models to predict future energy output with high accuracy. This hybrid approach ensures that both 

seasonal trends and real-time variations are accounted for, enabling energy community operators to optimize 

resource allocation and grid management [1].  

 

Figure 1 High le vel approach to Energy Forecasting 

The next sections will delve deeper into each phase of the methodology. 

5.1.1 Data Processing & Feature Engineering 

The Energy Forecasting Tool integrates multiple datasets, including historical PV production records, weather 

data, and external climate sources, to improve prediction accuracy. This section outlines the data processing 

pipeline and feature engineering techniques used to optimize forecasting performance. 

The forecasting model is built upon structured datasets from multiple pilot sites, external weather sources, and 

historical records. The primary data sources include: 

Pilot Site Datasets External Datasets 

Monthly PV production data (kWh) OpenWeatherMap (Real-time & forecasted weather 

data: temperature, irradiance, cloud cover) 

Cumulative energy production (kWh) CAMS Solar Radiation Time-Series (Solar radiation 

estimates for PV efficiency modeling) 

Efficiency metrics (kWh/kWc) ERA5 Reanalysis Data (Historical climate conditions 

for long-term trend analysis) 
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Installation characteristics (location, orientation, 

system capacity) 

 

Figure 2 Data Processing for the Forecasting Tool 

Raw data undergoes multiple preprocessing steps to enhance model accuracy and eliminate inconsistencies. 

1. Data Cleaning 

• Handling missing values using interpolation for time-series continuity. 

• Removing outliers with statistical anomaly detection (e.g., Z-score analysis). 

2. Data Normalization & Scaling 

• Normalizing production data using Min-Max Scaling to improve ML model convergence. 

• Standardizing weather features (e.g., temperature, irradiance) using Z-score transformation. 

3. Time-Series Structuring 

• Aligning all datasets to a uniform timestamp format (e.g., daily/monthly). 

• Resampling high-frequency weather data to match the production data resolution. 

To maximize forecasting accuracy, the tool employs a structured approach to feature extraction from raw data, 

leveraging key techniques to enhance predictive performance. 

One critical aspect of this methodology is the incorporation of temporal features. By analyzing the month, day, 

and hour of energy production, the model captures seasonal variations and daily fluctuations. Additionally, lag-

based features, such as the energy output from previous months, are integrated to account for time-series 

memory effects, ensuring that past trends inform future predictions. 

Another important dimension is the use of weather and solar-related features, which play a crucial role in short-

term forecasting. The tool applies moving averages and rolling statistical techniques to smooth out noise in 

weather patterns, improving data stability and reliability. Furthermore, key meteorological factors such as solar 

radiation intensity and cloud cover are incorporated, as they directly impact photovoltaic (PV) energy generation, 

helping to refine short-term predictions. 

Beyond these core features, the model also derives efficiency metrics to enable more precise performance 

assessments. Metrics such as energy yield per kilowatt capacity (kWh/kWc) allow for comparisons across 

different installations, while the capacity utilization factor (CUF) provides insight into seasonal variations in PV 

performance. 

Through a combination of rigorous data cleaning, normalization, and advanced feature engineering, the 

forecasting model gains a deeper understanding of both long-term seasonal trends and short-term fluctuations. 

This comprehensive approach enhances predictive accuracy, enabling more reliable energy forecasting. 

5.1.2 Forecasting Models 

The Energy Forecasting Tool is designed to leverage machine learning techniques to generate accurate 

predictions for both long-term (monthly) and short-term (hourly/daily) solar energy production. Given the 

inherent variability in solar energy generation, the forecasting models must effectively capture both seasonal 
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patterns and real-time fluctuations, ensuring optimal decision-making for energy community managers and grid 

operators. 

To address the different forecasting horizons required for this tool, we employ a combination of statistical, 

machine learning, and deep learning models. The selection of these models is based on their demonstrated 

effectiveness in handling time-series data, particularly in energy forecasting applications. 

 

Figure 3 High Level Architecture of the Forecasting Tool 

For long-term forecasting (UC1.a), where the objective is to predict monthly PV production, models that excel at 

identifying seasonal trends and long-term dependencies are prioritized. The Seasonal AutoRegressive Integrated 

Moving Average (SARIMA) model is particularly suited for this task as it effectively captures cyclical patterns in 

energy generation by incorporating seasonal differencing into its forecasting framework. Additionally, Long 

Short-Term Memory (LSTM) neural networks, a type of recurrent neural network (RNN), are used to capture 

complex temporal dependencies, making them highly effective for time-series forecasting. Finally, Random 

Forest Regression, an ensemble-based machine learning model, is employed to identify non-linear relationships 

and interactions among the various input features. 
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Figure 4 LSTM building blocks as depicted in [2] 

For short-term forecasting (UC1.b), where the goal is to generate accurate hourly or daily predictions, the focus 

is on models that can quickly adapt to rapid fluctuations in solar production due to weather variability. XGBoost 

(Extreme Gradient Boosting), a high-performance tree-based machine learning algorithm, is employed due to its 

ability to handle structured time-series data with high accuracy and efficiency. Additionally, LSTM networks with 

an attention mechanism are incorporated to ensure that recent data points are given greater importance in 

making short-term predictions. Finally, LightGBM, an optimized gradient boosting framework known for its 

computational efficiency, is used to improve real-time forecasting performance. 

By utilizing this diverse set of models, the Energy Forecasting Tool ensures robust forecasting accuracy across 

different time horizons, catering to both strategic planning and real-time operational adjustments. 

To ensure the models generalize well to unseen data, a structured data splitting strategy is implemented. The 

dataset is divided into training and testing subsets, typically using an 80-20 split, where 80% of the historical data 

is used for model training and the remaining 20% is reserved for validation. Given the time-dependent nature of 

the dataset, rolling forecasting origin cross-validation is employed to test the models on progressively newer 

data while preserving the chronological order. 

Hyperparameter tuning is a critical step in optimizing the models for accuracy and efficiency. For deep learning 

models like LSTMs, Bayesian Optimization is used to fine-tune parameters such as the number of layers, dropout 

rates, and learning rates. For boosting models like XGBoost and LightGBM, grid search techniques are applied to 

optimize key parameters, including tree depth, learning rate, and the number of estimators. Similarly, the 
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SARIMA model is fine-tuned by selecting the optimal values for seasonal differencing order, autoregressive, and 

moving average components. [3] 

 

Figure 5 Forecasting Architecture when smart meter data is incorporated as proposed in [3] 

To further enhance forecasting accuracy and tool synergy in future versions of the ECOEMPOWER ICT Platform, 

an ensemble learning approach is adopted, where multiple models are combined to create a more robust 

prediction system. In particular, a hybrid model that integrates LSTM and XGBoost can be implemented, 

leveraging the deep learning model’s ability to capture complex temporal dependencies while utilizing the 

gradient boosting model’s strength in handling structured data efficiently. The inputs that can be incorporated 

are the aggregated profiles created in the Energy Modelling Tool and potentially smart meter data to the Pilot 

Sites with enough technical maturity. The outputs from these models are then combined through weighted 

averaging, allowing the system to extract load forecasts in addition to RES Forecasts. 

5.1.3 Evaluation Metrics 

To ensure the reliability and accuracy of the Energy Forecasting Tool, we have selected some evaluation metrics 

to assess the performance of the forecasting models. Given the importance of both long-term (monthly) and 

short-term (hourly/daily) solar energy forecasting, multiple error metrics are used to evaluate different aspects 

of prediction accuracy. 

The following error metrics are used to evaluate the effectiveness of the forecasting models: 

1. Root Mean Square Error (RMSE): Measures the overall magnitude of prediction errors by penalizing 

larger deviations more heavily. 
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RMSE is particularly useful for evaluating short-term forecasts (UC1.b), where sudden weather 

fluctuations may cause large deviations. 

2. Mean Absolute Error (MAE): Provides an absolute measure of average prediction error. 
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MAE is more interpretable than RMSE and is useful for assessing the general accuracy of long-term forecasts 

(UC1.a). 

3. Mean Absolute Percentage Error (MAPE): Evaluates the relative error as a percentage of actual values, 

allowing for comparisons across different solar installations. 
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4. Coefficient of Determination (R² Score): Measures how well the model explains variance in the data, 

with values ranging from 0 to 1 (where 1 indicates a perfect fit). 
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R² provides insight into the overall predictive power of the model and helps compare different forecasting 

approaches. 

By employing these evaluation metrics and methodologies, the Energy Forecasting Tool ensures high accuracy, 

reliability, and adaptability, making it a robust solution for energy communities in managing solar PV generation. 

5.2 Energy Modelling and Scheduling Tool 

The Energy Modelling and Scheduling Tool is designed to provide energy communities with advanced capabilities 

for optimizing energy consumption, resource allocation, and scheduling, based on the maximization of self-

consumption potential (without relying on grid operator’s (DSOs/TSOs) incentives). Unlike traditional models 

that focus on peer-to-peer (P2P) trading or individual prosumers, this tool is structured around a central decision-

making entity (at aggregated level) that ensures optimal energy management at the community level, that is 

usually operated by an aggregator. 

The tool integrates three key functionalities based on the defined Use Cases (UCs): 

1. UC2.a – Energy Profiling & Day-Ahead Planning (building level): Generates detailed energy 

consumption profiles for buildings and schedules flexible loads to align with renewable energy 

generation and available electricity tariff structures for cost efficiency. 

2. UC2.b – Community Energy Flow Simulation: Models energy distribution within the community, 

identifying surpluses, deficits, and optimization strategies for better resource utilization. 

3. UC2.c – Load Management & Scenario Planning: Provides tools to assess, optimize, and model 

community self-consumption while allowing users to explore different renewable energy scenarios to 

improve sustainability. 

The development of this tool is guided by five core principles, ensuring it effectively serves energy communities 

while remaining adaptable, efficient, and scalable. 

First and foremost, the tool follows an Energy Community-Centric Approach, prioritizing decisions that align with 

the collective needs of the energy community (EC) rather than focusing on individual buildings or prosumers. 

This ensures that energy management strategies are optimized at a broader level, fostering shared benefits and 

resource efficiency. 

To enhance usability and precision, the tool is designed with Flexibility and Adaptability in mind. Users have the 

ability to manually input missing data through an intuitive interface, allowing them to refine building 
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consumption profiles and improve the accuracy of scheduling recommendations. This adaptability ensures that 

the system remains effective even in cases where complete data sets are unavailable. 

A key objective of the tool is to maximize the utilization of renewable energy sources, particularly self-

consumption of locally generated photovoltaic (PV) power and energy storage assets. By intelligently managing 

energy flows, the system reduces reliance on external energy sources, promoting sustainability and energy 

independence within the community. 

In addition to sustainability, cost-effectiveness optimization is a fundamental aspect of the tool’s design. It 

strategically aligns energy consumption with periods of low electricity tariffs and peak renewable production, 

minimizing operational costs while maximizing the efficiency of energy use. 

Finally, the tool is built with scalability and future expansion in mind. It is designed to support multiple energy 

communities with varying data sources, ensuring interoperability and seamless integration across different 

energy systems. This forward-looking approach guarantees that the tool remains relevant as energy networks 

evolve and expand. 

Overall, the core computational framework of the Energy Modelling Tool consists of the following components: 

• Optimization Algorithms for Load Scheduling – Applies Mixed Integer Linear Programming (MILP) for 

optimal scheduling of flexible loads. 

• Models of Community-Wide Energy Flows – Utilizes agent-based modeling to analyze energy sharing 

opportunities within the community. 

• Scenario-Based RES Planning – Incorporates what-if analysis for different renewable energy 

configurations, allowing users to explore optimal self-consumption strategies. 

As a potential improvement we are also considering adding a time-series Energy Profiling Component, that will 

utilize historical consumption data to create pridictive profiles for the Energy Demand of the buildings or other 

assets. Since this module will require heavier computational resources and data, we will consider adding this on 

a later version of the tool. 

5.2.1 Data Processing & Feature Engineering 

The accuracy and efficiency of the Energy Modelling and Scheduling Tool are heavily dependent on the quality 

of the energy consumption, financial, and renewable generation datasets available from various Energy 

Communities (ECs). The tool is designed to integrate both historical and real-time data, ensuring that energy 

optimization decisions are based on robust and up-to-date information. Given that data gaps and inconsistencies 

may exist in real-world implementations, the tool also allows users to manually input missing details through the 

user interface (UI) to ensure accurate modelling and optimization. 

This section outlines the data collection process, the preprocessing pipeline, and the feature engineering 

techniques used to convert raw data into structured inputs suitable for optimization and scenario analysis. 

The tool aggregates data from multiple sources, each providing crucial insights into energy consumption 

patterns, renewable energy availability, and financial implications of energy usage. The datasets utilized in the 

tool can be classified into three main categories: 
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Table 15 Data needed for the development of the Energy Modelling Tool 

Pilot Site Datasets (Historical & 

Real-Time Energy Consumption) 

Renewable Generation & Self-

Consumption Data 

User-Provided Inputs via UI 

Hourly and 15-minute interval 

energy usage data for different 

types of buildings 

PV and CHP generation data 

recorded at 15-minute intervals 

Building characteristics (e.g 

appliances, operational 

constraints, energy flexibility) 

Energy consumption 

segmentation into time bands (e.g 

F0-F3) aligned with tariff 

structures 

Battery storage usage metrics, 

including charge and discharge 

cycles 

Scenario inputs (RES 

configurations, investment 

constraints, self-consumption 

targets) 

Financial records detailing tariffs, 

taxes, and billed amounts for cost 

optimization 

 

Similarly to the Forecasting Tool, to maintain data integrity and consistency, a structured preprocessing pipeline 

is applied before the data is used in optimization models. This ensures that the tool can handle incomplete, noisy, 

or inconsistent data effectively, improving the reliability of the generated schedules and scenario outcomes. 

Real-world datasets often contain gaps or inconsistencies due to sensor errors, communication failures, or 

incomplete records. To address these issues: 

• Interpolation techniques are applied to fill small gaps in time-series energy consumption records, 

ensuring continuous data for optimization. 

• Proxy profiles are generated using clustering-based estimations, which allow the system to infer missing 

consumption data based on similar buildings with comparable energy usage patterns. 

This approach ensures that missing data does not introduce inaccuracies in scheduling and decision-making. 

Energy consumption data varies significantly across different buildings and operational contexts. To ensure 

comparability: 

• Min-Max Scaling is used to standardize energy consumption values, ensuring that all buildings are 

analyzed on a uniform scale. 

• Z-score normalization is applied to standardize energy demand and renewable generation patterns, 

ensuring consistency in load scheduling models. 

By normalizing the data, the tool enhances the accuracy and efficiency of machine learning models used in 

scenario-based decision-making. 

Energy consumption follows predictable time-based patterns, influenced by factors such as daily routines, 

weather conditions, and operational schedules. To capture these patterns: 

• Time-of-day, weekday/weekend, and seasonal indicators are extracted to analyze variations in demand 
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across different periods. 

• Peak vs. off-peak demand segmentation is performed to align energy consumption with tariff structures, 

enabling cost-efficient scheduling. 

These features allow the tool to generate load profiles that align with both operational needs and economic 

considerations. 

Given that maximizing self-consumption is a key objective for Energy Communities, the tool incorporates several 

renewable energy performance indicators: 

• PV generation ratios, which quantify the percentage of total electricity demand met by on-site solar 

generation. 

• Battery charge/discharge cycles, allowing the tool to model how stored energy is utilized to offset peak 

grid consumption. 

These metrics enable accurate renewable energy integration, ensuring that locally generated energy is used 

efficiently before drawing power from the grid. 

Load flexibility is a crucial aspect of energy optimization, as deferrable loads (e.g., HVAC systems, EV chargers) 

can be rescheduled to reduce costs and increase efficiency. To support this: 

• The tool identifies and classifies flexible loads, distinguishing them from non-deferrable energy 

consumption. 

• Scenario-based RES capacity factors are introduced, allowing for investment analysis and long-term 

energy planning. 

By extracting these features, the tool enables intelligent load shifting and scenario-based optimization, ensuring 

that ECs can adapt to changing energy conditions and future investment opportunities. 

5.2.2 Integration of External Datasets 

The Energy Modelling and Scheduling Tool leverages external datasets to enhance the accuracy of energy 

optimization, load scheduling, and scenario planning within Energy Communities (ECs). While historical and real-

time consumption data from pilot sites form the core of the system, integrating additional external datasets 

ensures that the tool is dynamic, adaptable, and capable of making informed decisions based on broader market 

and environmental conditions. 

To optimize scheduling and decision-making, the tool incorporates data from multiple external sources. These 

datasets provide critical insights into electricity markets, renewable energy availability, and regional climate 

conditions, allowing for more precise load optimization and energy cost management. The main external 

datasets include: 

Table 16 External Data used for the Energy Modelling Tool 

ENTSO-E Transparency Platform European Day-Ahead Electricity 

Prices Map 

PRIMES Model & Enerdata 

Market Forecasts 
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Real-time and historical electricity 

market data 

Hourly electricity price forecasts Long-term energy market 

projections 

Market clearing prices Demand trends 

Day-ahead electricity price 

variations 

Energy mix forecasts 

Real time prices are used to signal the potential shift of the flexible loads and to manage storage and are also 

incorporated as constraints in the load scheduling model. The long-term projections are assisting the decision 

making process for UC2.c and the long term planning of the ECs by assessing the feasibility of additional RES 

investments. 

5.2.3 Optimization & Scheduling Models 

The Energy Modelling and Scheduling Tool is designed to optimize energy consumption, resource allocation, and 

scheduling within ECs, enabling them to maximize self-consumption, reduce costs, and improve energy 

efficiency. As mentioned in previous sections, unlike P2P energy trading models, where individual prosumers 

make autonomous decisions, this tool adopts a centralized optimization approach. A designated aggregator is 

responsible for making collective scheduling decisions, ensuring that energy resources are distributed efficiently 

among buildings in the community. 

The optimization framework considers multiple factors, including time-of-use tariffs, renewable generation 

availability, battery storage management, and load flexibility, to determine optimal energy scheduling strategies. 

This approach allows communities to dynamically balance their energy flows, optimize self-consumption, and 

plan investments in renewable energy sources (RES). 

The tool is built to achieve multiple key objectives that directly benefit Energy Communities: 

1. Cost Optimization: By analyzing tariff structures and time-of-use pricing, the tool shifts energy 

consumption to low-cost periods while avoiding peak demand charges. 

2. Self-Consumption Maximization: The tool prioritizes the use of locally generated renewable energy 

before drawing from external sources, ensuring communities make the most of their existing PV and 

battery storage assets. 

3. Load Balancing Across the Community: The tool identifies surplus and deficit energy periods and 

redistributes energy across buildings to ensure fair and efficient utilization of resources. 

4. Battery Storage Optimization: By scheduling optimal charge and discharge cycles, the tool ensures that 

batteries are used effectively to store excess PV generation for later use, reducing reliance on the grid. 

5. Scenario Planning for Renewable Energy Investments: Users can examine and evaluate different RES 

configurations, such as adding new solar PV installations or battery storage systems, to assess their 

impact on energy independence and financial savings. 

The optimization framework integrates mathematical optimization, heuristic algorithms, and other models, 

enabling effective decision-making for energy scheduling and planning. 
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5.2.3.1  Mixed-Integer Linear Programming (MILP) for Load Scheduling 

To optimize day-ahead scheduling of flexible loads, the tool employs Mixed-Integer Linear Programming (MILP), 

a powerful mathematical optimization technique that ensures optimal and globally efficient scheduling 

decisions. The model minimizes total energy costs while adhering to operational constraints, such as appliance 

runtime requirements and user-defined preferences. [4] 

The objective function of the MILP model aims to minimize the total cost of energy consumption across all 

buildings: 

𝑚𝑖𝑛 ∑ ∑ 𝐶𝑡,𝑏

𝑏

∙ 𝑃𝑡,𝑏

𝑡

 

where 𝐶𝑡,𝑏 represents the cost of energy for building 𝑏 at time 𝑡, and 𝑃𝑡,𝑏 represents the power consumption at 

that time. The optimization process ensures that load shifting strategies are implemented effectively, prioritizing 

low-tariff periods and high-renewable generation windows. 

 

Figure 6 Factors to be taken into account for the MILP Algorithms as mentioned in [4] 

5.2.3.2 Quadratic Programming for Battery Charge/Discharge Optimization 

To manage battery storage systems efficiently, the tool uses Quadratic Programming (QP) to determine optimal 

charging and discharging schedules. The model balances minimizing costs with maximizing battery lifespan, 

ensuring that stored energy is used effectively to reduce peak consumption and reliance on grid energy. 

The objective function for battery optimization is defined as: 

𝑚𝑖𝑛 ∑(𝛼 ∙ 𝑆𝑂𝐶𝑡
2 + 𝛽 ∙  𝛦𝑡)

𝑡
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Where 𝑆𝑂𝐶𝑡  represents the battery state of charge at time 𝑡  and 𝛦𝑡  represents the energy exchanged. The 

quadratic terms are chosen based on a simplified model presented in [5] to provide a smooth and balanced 

charging pattern, preventing excessive cycling that could degrade batter health.  

 

Figure 7 Model approach for battery charge/discharge optimization as described in [5]. We will utilize a simplified format for 

the first version of the tool. 

5.2.3.3 Multi-Agent Modelling for Community-Wide Energy Flow Balancing 

To ensure fair and efficient energy distribution across the community, the tool employs multi-agent models. In 

the energy domain, a multi-agent system (MAS) refers to a network of autonomous agents, which can be 

software, hardware, or a combination of both, that work together to manage and control various aspects of an 

electrical system. In this approach, each building acts as an autonomous energy agent, with predefined 

consumption patterns, possible flexibility levels, and storage capacity [6]. 

 

Figure 8 Potential agent types as highlighted in [6], in our approach we focus on the optimization and management side of 

the communities 

Some concessions were made for the ECOEMPOWER Architecture, since there is no grid information or direct 

DSO involvement for any of the cases we are working on. Namely, there will not be an agent representing and 

managing the main power grid or an agent that can autonomously make actuation decisions in the ECs. The 

Building Agents’ focus is to provide actionable recommendations about optimized energy scheduling and self-

consumption, incorporating available and price signal data. 
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The aggregator could use the suggestions provided by the agents to dynamically adjust load schedules and thus 

balance energy surpluses and deficits, ensuring that community-wide energy resources are utilized in a more 

optimized manner. This model is particularly valuable in scenarios where some buildings generate more 

renewable energy than they consume, enabling intelligent redistribution within the community. 

5.2.3.4 Heuristic Methods and Genetic Algorithms for Scenario-Based RES Planning 

For long-term energy planning and investment analysis, the tool uses Heuristic Algorithms to examine the 

viability of various renewable energy deployment strategies. Users can input different configurations—such as 

installing new PV panels, increasing battery storage, or modifying load flexibility settings—and the tool evaluates 

the impact of these changes on overall community performance. Additionally, Genetic Algorithms (GA) have also 

been examined as a possible solution for this specific optimization problem, as this method does not require a 

priori knowledge of probability distributions or statistical moments of uncertain parameters, as it is based on 

their range [7]. 

The optimization process follows these steps: 

• Generate or input an initial population of different RES configurations (e.g., various PV and battery 

sizes). 

• Evaluate each configuration based on predefined criteria, such as self-consumption improvement, cost 

savings, and return on investment. 

• Apply heuristic function or genetic operations (selection, crossover, mutation) to find an optimal 

solution. 

• Output the best RES investment plan that aligns with the community’s goals. 

5.2.3.5 Decision-Making Workflow 

The tool follows a structured decision-making process to ensure accurate and effective scheduling: 

 

Figure 9 High Level Workflow for the Energy Modelling Tool 

1. Data Collection & Preprocessing: 

• Aggregates historical energy consumption, PV generation, tariff structures, and user-provided scenario 

inputs. 
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• Cleans and normalizes data to ensure consistency across different sources. 

2. Optimization & Scheduling Execution: 

• MILP-based scheduling generates optimized day-ahead load plans for each building. 

• Battery optimization (QP) determines ideal charge/discharge cycles to store excess renewable energy. 

• Multi-agent energy flow balancing ensures community-wide optimization. 

• Evolutionary scenario analysis explores new RES investment options. 

3. Results & Visualization: 

• The tool presents optimized load schedules, self-consumption metrics, cost savings estimates, and 

renewable energy recommendations through an interactive dashboard. 

• Users can explore different investment scenarios to determine the most effective strategies for 

improving community energy independence. 

4. User Feedback & Adjustments: 

• Energy community managers can modify inputs, adjust constraints, and rerun the algorithms to refine 

scheduling decisions. 

• The tool adapts over time as new data is continuously integrated into the optimization framework. 

5.2.4 Evaluation Metrics 

To ensure the accuracy, efficiency, and reliability of the Energy Modelling and Scheduling Tool, a structured 

evaluation framework is implemented. The tool is designed to optimize energy consumption, scheduling, and 

scenario planning for Energy Communities (ECs), making it essential to assess its performance across multiple 

dimensions. The evaluation methodology focuses on cost efficiency, energy self-sufficiency, optimization quality, 

and system adaptability. 

The tool is assessed using a range of quantitative performance indicators, each providing insight into a specific 

aspect of system performance. These include: 

Table 17 Energy Modelling Tool Evaluation Metrics 

Metric Definition Purpose Formula 

Total Cost Savings (%) Measures the 

percentage reduction in 

total electricity costs 

compared to a baseline 

(e.g., no optimization). 

Evaluates the tool’s 

ability to shift 

consumption to low-cost 

tariff periods and reduce 

overall community 

energy expenses. 

None 

Self-Consumption Ratio 

(%) 

The percentage of locally 

generated renewable 

energy that is consumed 

Higher self-consumption 

rates indicate better use 

of locally generated PV 

𝐶𝑅 =  
𝐸𝑠𝑒𝑙𝑓_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝐸𝑡𝑜𝑡𝑎𝑙_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

 × 100 
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within the community 

rather than exported to 

the grid. 

energy, reducing 

dependency on external 

suppliers. 

Renewable Utilization 

Index (RUI) 

Assesses the fraction of 

community energy 

demand met by 

renewables, combining 

self-consumption and 

optimized storage usage. 

Evaluates how efficiently 

the tool integrates 

renewables and energy 

storage to meet 

community energy 

needs. 

𝑆𝐶𝑅 =  
𝐸𝑠𝑒𝑙𝑓_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝐸𝑡𝑜𝑡𝑎𝑙_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

 × 100 

 

5.3 Cost-Benefit Analysis and Decision-Making Tool 

The Cost Benefit Analysis (CBA) and Decision-Making Tool is designed to support energy community leaders, 

aggregators, and other stakeholders in making informed financial decisions about energy investments. It 

provides a structured framework for evaluating the financial viability of various renewable energy projects, 

allowing users to assess potential interventions based on cost, return on investment (ROI), long-term financial 

sustainability, and sensitivity to economic variables. 

Energy communities face growing challenges in managing their financial resources efficiently, particularly as they 

seek to increase renewable energy penetration, enhance self-consumption, and optimize energy contracts. The 

CBA Tool addresses these needs by offering quantitative financial analysis, scenario-based investment planning, 

and tariff optimization capabilities, ensuring that projects align with both short-term operational goals and long-

term economic viability. 

The CBA methodology evaluates projects across different time horizons, ensuring that both short-term financial 

gains and long-term economic impacts are considered. The tool provides a structured approach to financial 

analysis, enabling users to: 

• Identify financially viable energy projects that contribute to long-term sustainability. 

• Optimize capital allocation by prioritizing high-impact investments. 

• Adapt to changing economic conditions by modeling different financial scenarios. 
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Figure 10 High Level Workflow of the CBA Tool 

The computational framework behind the CBA Tool is designed to handle large-scale energy investment 

scenarios, using mathematical formulations and financial evaluation methods to generate accurate and reliable 

projections. To provide a comprehensive and structured analysis, the tool follows a five-step methodology, 

guiding users through: 

• Scenario Selection & Investment Planning – Users define proposed interventions, such as expanding 

renewable generation, adding battery storage, or improving energy efficiency. Each scenario includes 

cost estimates, expected benefits, and key assumptions. 

• Performance Evaluation – The tool assesses baseline energy consumption and financial performance, 

providing insights into current inefficiencies and estimating how interventions impact energy self-

sufficiency, grid reliance, and revenue generation. 

• Cost Quantification – Users input financial details to create a full cost breakdown for each investment 

scenario. 

• Benefit Monetization – The tool translates energy savings, emission reductions etc. into monetary 

terms, enabling a direct comparison between different investment options. 

• Cost-Benefit Analysis (CBA) Computation – The system calculates key financial indicators, to determine 

whether a project is financially viable. A sensitivity analysis is also performed, evaluating how economic 

fluctuations affect project feasibility. 

5.3.1 Data Processing & Feature Engineering 

The accuracy and reliability of the CBA Tool depend on the availability of high-quality financial, energy 

consumption, and investment-related datasets. Given that energy community investments often involve long-

term financial projections, ensuring clean, structured, and well-integrated data is critical for obtaining accurate 

cost-benefit assessments and investment recommendations. 

This section describes the data sources, preprocessing pipeline, and feature engineering techniques used to 

structure raw data into meaningful inputs for cost-benefit modeling, investment evaluation, and scenario 

analysis. 
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Data Category Variables Usage 

Historical Energy and Financial 

Data 

Energy Demand & Consumption 

Trends, segmented by time-of-use 

(peak, off-peak, intermediate 

hours) Establish baseline energy 

consumption profiles and 

benchmark financial indicators for 

comparing against proposed 

investment scenarios. 

Self-Consumption Rates 

Tariff Structures 

Investment Records of past 

renewable energy installations 

and storage deployments 

Renewable Energy and Storage 

Data 

Solar and wind energy data 

sourced from pilot sites or 

standardized regional datasets 

Enable scenario-based analysis to 

assess how new renewable 

energy or battery storage 

deployments impact energy costs, 

revenues, and self-sufficiency. 

Battery Storage Data 

Energy Market Prices 

User-Provided Investment 

Scenarios & Market Data 

Capital Expenditures (CAPEX) 

Allow users to input custom 

financial assumptions and key 

market variables to model and 

compare investment scenarios for 

more tailored and informed 

decision-making. 

Operational Expenditures (OPEX) 

Policy Incentives like subsidies, 

feed-in tariffs, or carbon pricing 

mechanisms 

Discount rates, and energy price 

trends 

To maintain data integrity, all collected datasets undergo a structured preprocessing pipeline before they are 

used in financial modeling. This step is crucial for ensuring that raw financial and energy data is transformed into 

a structured and standardized format suitable for cost-benefit analysis. The data preprocessing pipeline consists 

of two main steps: 

Investment datasets frequently contain incomplete, inconsistent, or missing records, which can introduce biases 

into financial assessments. To mitigate these issues, the tool applies: 

• Interpolation techniques to estimate missing values in energy consumption, financial expenditures, and 

investment cost datasets. 

• Proxy modeling approaches, where missing investment cost data is approximated based on historical 

benchmarks and similar energy projects. 
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• Outlier detection methods, which identify and remove abnormal or extreme values in energy pricing, 

revenue estimates, or cost projections. 

To enable a fair comparison between different investment options, financial data must be normalized across 

different time periods, cost structures, and energy pricing mechanisms. The tool applies: 

• Standardized financial metrics, aligning energy cost data with historical and forecasted market trends to 

create meaningful financial comparisons. These metrics are further explained in Section 5.3.4. 

• Unit-based cost indexing, normalizing all investment costs per installed capacity (€/kW) or energy output 

(€/MWh), ensuring compatibility with industry-standard financial assessments. 

To extract meaningful insights from preprocessed datasets, the tool generates a comprehensive set of financial 

indicators and cost-benefit metrics, equipping decision-makers with the necessary data to evaluate investment 

feasibility and optimize financial planning. By analyzing these metrics, energy communities can assess the long-

term profitability, risk exposure, and overall economic impact of renewable energy and storage investments. 

5.3.2 CBA Methodology 

The CBA Tool employs a structured methodology to assess the financial viability of energy investments, ensuring 

that energy community stakeholders can make data-driven decisions. The methodology follows a systematic 

approach to quantifying costs and benefits, applying financial modeling techniques such as Net Present Value 

(NPV), Benefit-Cost Ratio (BCR), and sensitivity analysis. This is a widely accepted methodology as described in 

ENTSO-E’s guidelines [8], that we have modified to cover the specific needs of the ECs. These financial indicators 

allow users to compare multiple investment scenarios, optimize resources, and ensure long-term economic 

sustainability. 

As summarized in the introductory section of this chapter, the CBA framework implemented in this tool consists 

of five key steps that are detailed in the following sections. 

5.3.2.1 Identification of Interventions & Investment Scenarios 

The first step in the cost-benefit analysis process is the identification of potential interventions and investment 

scenarios. Energy communities often face multiple investment opportunities, each with varying financial 

implications. The tool allows users to define: 

• Increased renewable energy integration, such as expanding solar PV capacity, wind energy installations, 

or hybrid RES projects. 

• Energy storage deployment, including battery energy storage systems (BESS) or other demand-side 

flexibility solutions. 

• Demand-side management technologies, such as smart energy management systems, heat pumps, and 

electric vehicle (EV) charging infrastructure. 

Each investment scenario is analyzed based on technical feasibility, expected output (e.g energy savings) and 

financial parameters, ensuring a comprehensive evaluation of potential projects. 

5.3.2.2 Performance Evaluation & Baseline Comparison 

Before assessing the financial implications of new investments, it is essential to establish a baseline performance 

profile of the energy community. The tool analyzes: 
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• Historical energy consumption trends, identifying peak demand periods and inefficiencies. 

• Self-consumption rates, determining the proportion of locally generated energy used within the 

community. 

• Existing financial performance, analyzing historical energy tariffs, operational costs, and revenues from 

energy projects. 

Once a baseline scenario is established, investment interventions are evaluated in terms of their impact on: 

• Increased renewable energy penetration – Assessing the reduction in grid dependency. 

• Enhanced self-consumption rates – Estimating improvements in on-site energy usage. 

• Potential revenue streams – Identifying new income sources from energy trading or grid services. 

This comparative analysis ensures that stakeholders can assess the financial and operational improvements 

offered by different investment options. 

5.3.2.3 Cost Quantification 

A key component of the cost-benefit analysis is the identification and classification of costs associated with each 

investment scenario. The tool categorizes costs into three main groups: 

1. Capital Expenditures (CAPEX): One-time investment costs incurred at the beginning of the project 

including: 

o Equipment and infrastructure costs (e.g., PV panels, wind turbines, battery storage units). 

o  Installation and commissioning costs (e.g., labor, engineering, grid connection fees). 

2. Operational Expenditures (OPEX): Ongoing costs incurred over the project’s lifespan 

o Maintenance and repair expenses, ensuring long-term asset performance. 

o Insurance and administrative costs, which impact profitability. 

o Energy purchasing costs, if applicable (e.g., for hybrid systems). 

3. Environmental Costs 

o Carbon emissions and environmental impact (monetized using carbon pricing models). 

5.3.2.4 Benefit Monetization 

To ensure a fair comparison of investments, all energy savings, revenue streams, and environmental benefits are 

translated into monetary terms. The tool considers the following benefit categories: 

1. Energy Cost Savings: 

o Self-consumption rate improvement, reducing grid electricity purchases. 

o Lower energy tariffs, achieved through optimized contracts or demand-side management. 

2. Revenue Streams: 

o Selling surplus energy to the grid at feed-in tariff rates. 

o Participating in ancillary grid services, such as demand response programs. 
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3. Environmental Benefits: 

o Emission reductions, calculated using carbon pricing (€ per ton of CO₂ avoided). 

o Energy independence improvements, reducing reliance on external suppliers. 

5.3.2.5 Cost-Benefit Analysis Computation 

The tool computes several key financial indicators that provide a clear understanding of an investment’s 

expected performance: 

• Payback Period – This metric estimates the time required to recover the initial investment costs through 

accumulated operational savings. A shorter payback period indicates a quicker return on investment, 

making the project financially attractive. 

• Revenue Potential – The tool projects potential income streams generated from surplus renewable 

energy exports and participation in grid services markets. These revenue sources can enhance the 

overall financial viability of the project by offsetting costs and providing additional returns. 

To further support financial decision-making, the tool generates a set of cost-benefit metrics, allowing 

stakeholders to compare different investment options and assess their financial sustainability: 

• Net Present Value (NPV) – This metric evaluates the discounted value of total expected benefits and 

costs over time. A positive NPV indicates a financially viable project, as the total benefits outweigh the 

total expenditures. The tool calculates NPV for each investment scenario, allowing stakeholders to 

compare multiple interventions and select the most financially viable option. 

𝑁𝑃𝑉 =  ∑
(𝐵𝑡 −  𝐶𝑜𝑝,𝑡)

(1 + 𝑟)𝑡

𝑇

𝑡=1

− 𝐶𝑖𝑛𝑣 −  𝐶𝑒𝑛𝑣  

where: 

o 𝐵𝑡  = Benefits from energy savings, revenue streams, and environmental incentives in year 𝑡. 

o 𝐶𝑜𝑝,𝑡 = Operational costs in year 𝑡 (e.g., maintenance, insurance, administrative costs). 

o 𝐶𝑖𝑛𝑣 = Initial capital expenditure (CAPEX) for infrastructure and equipment. 

o 𝐶𝑒𝑛𝑣 = Environmental costs (e.g., land use, emissions pricing). 

o 𝑟 = Discount rate. 

o 𝑇 = Total time horizon (e.g., 20-30 years). 

• Benefit-Cost Ratio (BCR) – By comparing total financial returns against total investment costs, the BCR 

provides a clear indication of whether an investment will yield a positive financial outcome. A BCR 

greater than 1 suggests that the benefits outweigh the costs, making the investment economically 

justifiable. The BCR metric helps decision-makers compare multiple investment options, prioritize 

projects with higher cost-efficiency, and ensure that resources are allocated to interventions with the 

highest financial returns. All variables retain their previous meaning. 

𝐵𝐶𝑅 =  
∑

𝐵𝑡

(1 + 𝑟)𝑡
𝑇
𝑡=1

𝐶𝑖𝑛𝑣 +  ∑
𝐶𝑜𝑝,𝑡

(1 + 𝑟)𝑡
𝑇
𝑡=1 + 𝐶𝑒𝑛𝑣 
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• Sensitivity Analysis & Risk Assessment – The tool incorporates sensitivity parameters to analyze how 

variations in key financial assumptions (such as energy prices, policy incentives, or maintenance costs) 

affect overall project performance. This helps decision-makers identify potential financial risks and 

uncertainties, ensuring more resilient investment strategies. Given that energy investments are subject 

to economic fluctuations, the tool performs a sensitivity analysis, testing variations in: 

o Discount rates (ranging from 5% to 15%). 

o Energy price trends (assessing market volatility). 

o Regulatory and policy changes, including carbon pricing adjustments. 

By integrating these financial performance indicators and cost-benefit metrics, the tool enables energy 

communities to make well-informed, data-driven investment decisions, ensuring economic feasibility and long-

term sustainability. 

5.3.3 Evaluation Metrics & Performance Indicators 

The CBA Tool evaluates investment feasibility by analyzing key financial, environmental, and operational metrics 

that measure the overall impact and effectiveness of proposed energy interventions. These indicators enable 

decision-makers to assess the profitability, cost efficiency, risk exposure, and sustainability benefits of energy 

projects, ensuring that investments align with both financial and strategic objectives. 

The evaluation framework consists of three primary metric categories: 

1. Financial Metrics – Assess the economic viability and return on investment (ROI) of a project. 

2. Operational Metrics – Measure the increase in renewable energy use, self-consumption, and revenue 

generation from surplus energy sales. 

3. Environmental – Quantify CO₂ emission reductions, ensuring alignment with sustainability and climate 

targets. 

By combining these quantitative indicators, the tool provides a holistic investment evaluation, ensuring that 

decision-makers have transparent and reliable data to support financially and environmentally sustainable 

energy planning. 

Financial indicators are the core assessment tools used to determine whether an energy investment is 

economically viable. The CBA Tool applies standard financial evaluation methods to calculate profitability, 

payback time, and cost-effectiveness. 

Metric Definition Purpose Interpretation 

Net Present Value (NPV) NPV represents the total 

expected financial return 

of an investment, 

discounted to the 

present value. 

Determines whether the 

benefits of an investment 

exceed the total costs 

when accounting for the 

time value of money. 

NPV > 0 →  The 

investment is profitable. 

NPV < 0 →  The 

investment is financially 

unviable. 
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Benefit-Cost Ratio (BCR) The BCR compares total 

discounted benefits to 

total discounted costs, 

providing a measure of 

cost efficiency. 

Assesses whether an 

investment delivers 

more financial value than 

it costs. 

BCR > 1 →  The 

investment is financially 

viable. 

BCR < 1 →  The 

investment is not cost-

effective. 

Payback Period The payback period 

estimates the time 

required for an 

investment to recover its 

initial costs through 

operational savings. 

Helps decision-makers 

prioritize investments 

with shorter payback 

times to reduce financial 

risk. 

Shorter payback periods 

indicate faster capital 

recovery and lower 

financial risk. 

Longer payback periods 

require additional 

sensitivity analysis to 

assess economic 

viability. 

Internal Rate of Return 

(IRR) 

The IRR is the discount 

rate at which the NPV of 

an investment becomes 

zero. 

Measures the expected 

annual return of an 

investment, allowing 

comparisons with 

alternative projects. 

IRR > Discount Rate → 

The project is financially 

attractive. 

IRR < Discount Rate → 

The project may not be 

viable. 

Renewable Energy Share 

Increase (%) 

The percentage increase 

in energy demand 

covered by renewable 

energy sources (RES) 

after the investment. 

Evaluates the extent to 

which an investment 

reduces dependency on 

fossil fuel-based 

electricity. 

Higher values indicate 

greater renewable 

energy penetration and 

improved sustainability. 

Self-Consumption 

Increase (%) 

The improvement in the 

percentage of renewable 

energy produced that is 

consumed directly by the 

energy community. 

Measures the 

effectiveness of energy 

storage and demand-side 

management strategies 

in reducing grid reliance. 

Higher self-consumption 

rates indicate better 

energy efficiency and 

lower energy 

procurement costs. 

Revenue Streams from 

Surplus Energy Sales 

(€/kWh Sold) 

The additional income 

generated from selling 

excess renewable energy 

to the grid or local energy 

markets. 

Quantifies the financial 

return from surplus 

energy exports, 

supporting tariff and 

contract negotiations. 

Higher revenue streams 

indicate greater financial 

sustainability and energy 

market participation. 
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CO₂ Reduction (tons 

avoided per year) 

The total carbon dioxide 

emissions avoided due to 

increased renewable 

energy generation and 

reduced reliance on fossil 

fuels. 

Measures the 

environmental benefits 

of an investment, 

supporting climate policy 

objectives and carbon 

credit mechanisms. 

Higher CO₂ reductions 

indicate stronger 

environmental impact 

and regulatory 

compliance. 
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6 Technology Stack 

The implementation of the ECOEMPOWER ICT Platform was conducted through a structured, phased approach 

to ensure modularity, scalability, and efficiency and will be thoroughly presented in D2.3. In this section we will 

describe the basic technology stack we have used to develop it. 

We have integrated multiple data sources, including the Pilot Datasets discussed in Section 4, and the external 

weather APIs, market tariff datasets. To successfully feed the datasets into the three Energy Tools, some 

automated data cleaning and normalization routines have been implemented according to the needs of each 

tool, as described in Section 5 of this deliverable. To handle missing or faulty data, some mechanisms have been 

incorporated using Pandas and NumPy libraries in Python. 

The ICT Tools that comprise the ICT Platform were created using Python and relevant libraries such as Pandas, 

SciPy, requests and PuLP and designed to be containerized to be deployed in various Platforms and 

infrastructures, such as the ECOEMPOWER Community and Engagement Platform developed in T4.7, potentially 

the different OSSs etc. 

Regarding the UI, a React-based user interface has been developed with interactive energy visualization tools, 

including Recharts and D3.js. Dashboards have been built to present all the key evaluation metrics of the tools, 

as described in Section 5. The table below contains a summary of the core components and the specific 

technologies that we explored for the implementation. 

Component Description Library/Technology 

Data Integration & Preprocessing Handles data ingestion, cleaning, 

normalization, and fault detection 

for pilot site datasets and external 

APIs. 

Python: Pandas, NumPy, SciPy, 

requests 

Energy Forecasting Tool Provides long-term PV production 

forecasts (monthly) and short-

term generation forecasts 

(hourly/day-ahead). 

Python: SARIMA (Statsmodels), 

LSTM (TensorFlow), SciPy 

Energy Modelling & Scheduling 

Tool 

Optimizes load shifting, peer-to-

peer energy trading, and 

renewable storage scheduling 

using multi-agent optimization. 

Python: PuLP (Linear 

Programming), SciPy Optimization 

Cost Benefit Analysis Tool Evaluates investment feasibility 

using NPV, BCR, payback period, 

and sensitivity analysis. 

Python: NumPy (Financial 

Modelling), Monte Carlo 

Simulations (SciPy), Matplotlib 

(Financial Visualization) 
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UI Web dashboard for data 

visualization, scenario creation 

and financial analysis 

React.js, Recharts, D3.js (Graph-

Based Visualization) 
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7 Conclusions and Next Steps 

 

In this deliverable we described the overview of the methodology and algorithmic processes developed to create 

the three ECOEMPOWER ICT Tools. The Energy Forecasting Tool was designed to predict solar PV energy 

generation, supporting long-term strategic planning and short-term operation adjustments. As data-driven 

solutions, an important aspect that was discussed was the available data collected from the REs and various 

external sources. The Energy Modelling and Scheduling Tool optimizes energy consumption, resource allocation, 

and scheduling for energy communities by maximizing self-consumption potential through a central decision-

making entity, ensuring optimal community-level energy management without relying on grid operator 

incentives. Finally, the Cost Benefit Analysis and Decision-Making Tool was designed to help energy community 

leaders, aggregators, and stakeholders evaluate the financial viability of renewable energy projects by assessing 

costs, ROI, long-term sustainability, and sensitivity to economic variables. Specifics regarding the technology 

stacks that were used were also described, as well as some sample test cases that we developed to assess the 

different functionalities and evaluation metrics in the following months and deliverables of WP2. 

Taking into consideration the project roadmap and the challenges we have faced do far, the next steps can be 

summarized below: 

• The UI of the ICT Tools will be presented in D2.3, which will be officially submitted in M20. The decision 

to postpone the submission was made to offset the delays caused by the change of Pilot Partners and 

consequently the rejection and resubmission of D2.1 as well as the mismatch of data received from the 

different Pilot Sites. 

• To have a unified storytelling approach for the whole of ECOEMPOWER, the integration of the technical 

tools of all WPs should be contained in one place. For this reason, the integration of the ICT Tools created 

in WP2 with the central hub for ECOEMPOWER, that is the Community Platform developed in WP4 

should be prioritized and be explored in depth. 

• The validation of the Energy Tools will be thoroughly documented in the next three deliverables outlined 

in the DoA. To facilitate the validation, dedicated workshops for the REs should be arranged to create 

detailed test cases and scenarios for the three Tools for all ECs. The results of these case studies will be 

documented in deliverables D2.4, D2.5 and D2.6. 

• The development of the Tools will continue throughout the end of the project to ensure that their results 

are accurate, and the ECs find meaningful use for them. Each new cycle of development and refinement 

will also be documented in D2.4, D2.5 and D2.6. 
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